If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=-16x^2+80
We move all terms to the left:
10-(-16x^2+80)=0
We get rid of parentheses
16x^2-80+10=0
We add all the numbers together, and all the variables
16x^2-70=0
a = 16; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·16·(-70)
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{70}}{2*16}=\frac{0-8\sqrt{70}}{32} =-\frac{8\sqrt{70}}{32} =-\frac{\sqrt{70}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{70}}{2*16}=\frac{0+8\sqrt{70}}{32} =\frac{8\sqrt{70}}{32} =\frac{\sqrt{70}}{4} $
| 10=4x-60 | | 91=5w+11 | | 2|m+7|=8 | | -1/7d+4=7 | | -2/5x+1/2=-2/5 | | 7x+35=112 | | a-9/3=7 | | 0.08x=1046 | | x+0.08x=1.08 | | -w/2=57 | | 4.9t^2-2t-100=0 | | -23=u/6 | | 6x^2=1000 | | Y=(x-6)-2) | | x/105=100/70 | | 10x-7=8x+4 | | Y(20)=15x(1) | | -3(x+1)+4=10 | | 6a-4=3a-56 | | 11=v/3-11 | | x^2+3x-9=13 | | 11=v/ | | 6x32=4 | | 1/2b-1=1 | | n^2+10n=-14 | | 15x-14=8x-8 | | 3.97(9.85w-6.39)=11.19 | | 3/4c-3=3 | | x+0.08x=1046 | | y/5-6=24 | | 34.16=x-0.16 | | Y=400x-x^2 |